Los puntos de Lagrange, también denominados puntos L o puntos de libración, son las cinco posiciones en un sistema orbital donde un objeto pequeño sólo afectado por la gravedad puede estar teóricamente estacionario respecto a dos objetos más grandes, como es el caso de un satélite artificial con respecto a la Tierra y la Luna. Los puntos de Lagrange marcan las posiciones donde la atracción gravitatoria combinada de las dos masas grandes proporciona la fuerza centrípeta necesaria para rotar sincrónicamente con la menor de ellas. Es en estos puntos donde se encuentran orvitando las colonias espaciales; estas fueron edificadas tras la abilitacion y la construccion de la base lunar como punto de abastecimiento y de suministros para la competencia por la construccion de las colonias.
Son análogos a las órbitas geosincrónicas que permiten a un objeto estar en una posición "fija" en el espacio en lugar de en una órbita en que su posición relativa cambia continuamente.
Los primeros tres puntos de Lagrange son técnicamente estables sólo en el plano perpendicular a la línea entre los dos cuerpos. Esto puede verse más fácilmente considerando el punto L1. Una masa de prueba desplazada perpendicularmente de la línea central sentiría una fuerza atrayéndola hacia el punto de equilibrio. Esto es así porque las componentes laterales de la gravedad de las dos masas se suman para producir esta fuerza, mientras que las componentes a lo largo del eje se anulan. Sin embargo, si un objeto situado en el punto L1 fuera llevado hacia una de las masas, la atracción gravitatoria que siente por esa masa sería más grande, y sería atraído hacia ella (el modelo es muy similar al de la fuerza de marea).
Aunque los puntos L1, L2 y L3 son nominalmente inestables, resulta que es posible encontrar órbitas periódicas estables alrededor de estos puntos, por lo menos en el problema restringido de los tres-cuerpos. Estas órbitas perfectamente periódicas, denominadas órbitas de "halo", no existen en un sistema dinámico de n-cuerpos como el Sistema Solar. Sin embargo, sí existen las órbitas Lissajous cuasi-periódicas, y son las órbitas que se han usado en todas las misiones espaciales a los puntos de libración. Aunque las órbitas no son perfectamente estables, un esfuerzo relativamente modesto lo mantiene en la órbita Lissajous durante un largo período de tiempo. También resulta útil en el caso del punto L1 del sistema Sol-Tierra poner la nave espacial en una órbita Lissajous de amplitud grande (100.000–200.000 km) en lugar de estacionarlo en el punto de la libración, porque esto mantiene la nave espacial fuera de la línea del Sol-Tierra directa y por eso reduce las interferencias solares en las comunicaciones de la Tierra con la nave espacial.
Otra propiedad útil e interesante de los puntos de equilibrio colineales y sus órbitas de Lissajous asociadas es que ellos sirven como puertas de acceso para controlar las trayectorias caóticas de una red de transporte interplanetario.
En contraste con la inestabilidad de los puntos colineales, los puntos triangulares (L4 y L5) tienen un equilibrio estable (ver atractor), con tal que la razón de las masas M1/M2 es > 24,96. Éste es el caso para los sistemas Sol/Tierra y Tierra/Luna, aunque por un margen menor en el último caso. Cuando un cuerpo en estos puntos es perturbado y se mueve fuera del punto, actúa un Efecto Coriolis que lo devuelve al punto.
Son análogos a las órbitas geosincrónicas que permiten a un objeto estar en una posición "fija" en el espacio en lugar de en una órbita en que su posición relativa cambia continuamente.
Los primeros tres puntos de Lagrange son técnicamente estables sólo en el plano perpendicular a la línea entre los dos cuerpos. Esto puede verse más fácilmente considerando el punto L1. Una masa de prueba desplazada perpendicularmente de la línea central sentiría una fuerza atrayéndola hacia el punto de equilibrio. Esto es así porque las componentes laterales de la gravedad de las dos masas se suman para producir esta fuerza, mientras que las componentes a lo largo del eje se anulan. Sin embargo, si un objeto situado en el punto L1 fuera llevado hacia una de las masas, la atracción gravitatoria que siente por esa masa sería más grande, y sería atraído hacia ella (el modelo es muy similar al de la fuerza de marea).
Aunque los puntos L1, L2 y L3 son nominalmente inestables, resulta que es posible encontrar órbitas periódicas estables alrededor de estos puntos, por lo menos en el problema restringido de los tres-cuerpos. Estas órbitas perfectamente periódicas, denominadas órbitas de "halo", no existen en un sistema dinámico de n-cuerpos como el Sistema Solar. Sin embargo, sí existen las órbitas Lissajous cuasi-periódicas, y son las órbitas que se han usado en todas las misiones espaciales a los puntos de libración. Aunque las órbitas no son perfectamente estables, un esfuerzo relativamente modesto lo mantiene en la órbita Lissajous durante un largo período de tiempo. También resulta útil en el caso del punto L1 del sistema Sol-Tierra poner la nave espacial en una órbita Lissajous de amplitud grande (100.000–200.000 km) en lugar de estacionarlo en el punto de la libración, porque esto mantiene la nave espacial fuera de la línea del Sol-Tierra directa y por eso reduce las interferencias solares en las comunicaciones de la Tierra con la nave espacial.
Otra propiedad útil e interesante de los puntos de equilibrio colineales y sus órbitas de Lissajous asociadas es que ellos sirven como puertas de acceso para controlar las trayectorias caóticas de una red de transporte interplanetario.
En contraste con la inestabilidad de los puntos colineales, los puntos triangulares (L4 y L5) tienen un equilibrio estable (ver atractor), con tal que la razón de las masas M1/M2 es > 24,96. Éste es el caso para los sistemas Sol/Tierra y Tierra/Luna, aunque por un margen menor en el último caso. Cuando un cuerpo en estos puntos es perturbado y se mueve fuera del punto, actúa un Efecto Coriolis que lo devuelve al punto.